2010-06-29

Natręctwo

Dręczy mnie mały problem matematyczny - nie wiem czy trudny (jak bym znał rozwiązanie to bym wiedział, ale wtedy bym nie pytał). Zgaduje, że jest znany w folklorze matematycznym. Prześladuje na tyle natrętnie, że przeszkadza mi trochę w pracy, więc postanowiłem się chociaż cześciowo uwolnić dzieląc się nim.
Zatem:
Na płaszczyźnie euklidesowej, dla zbioru ograniczonego S przez szerokość S w kierunku X gdzie X jest dowolną prosta, rozumiem kres dolny odległości prostych prostopadłych do X takich, że S mieści się w pasie między nimi. Oznaczmy go W(S,X).
Ograniczę się do zbiorów S będących homeomorficznymi obrazami okręgu - krzywych zamkniętych bez samoprzecięć. Dla S1 , S2 równość funkcji W(S1 , _) ≡ W(S2, _) na ogół nie oznacza, że S1 jest przystające do S2 . Najprostsze kontrprzykłady to krzywe niewypukłe, np brzeg kwadratu z małym wcięciem “do środka” na jednym z boków. Ale wypukłość też nie daje gwarancji - przykładem okrąg i trójkąt Roleaux (ten od silnika Wankla) o szerokości równej średnicy okręgu.
Pytanie jakie mnie nurtuje: A co jeżeli założmy, że krzywa jest wypukła (ogranicza obszar wypukły) i gładka (tzn. jest gładkim włożeniem okręgu) ? Czy wtedy W(S1 , _) ≡ W(S2, _) gwarantuje przystawanie S1 i S2 ?

Brak komentarzy:

Prześlij komentarz